

RESEARCH ARTICLE

Localising 3D Construction Printing: A Mixed-Methods Assessment of Material Feasibility and Artisan Perceptions in Nigeria

Joy O. Obadoba¹, Leke A. Oduwaye²

¹ Centre for Housing and Sustainable Development, University of Lagos, Nigeria

² Department of Urban and Regional Planning, University of Lagos, Lagos, Nigeria

ABSTRACT

Rapid urbanisation and a housing deficit in Nigeria, particularly in Abuja (the federal capital territory), have intensified the need for innovative and cost-effective solutions to deliver affordable housing. This study examines how three-dimensional construction printing (3DCP) could resolve the affordable housing construction in Nigeria, as its contribution towards the realisation of sustainable development. The study employs both quantitative and qualitative methods, including interviews with brick masons and a review of case studies from Malawi and Kenya. The interviews provide insights into motivation, experiences, and perspectives, while the case studies highlight their feasibility for low-income earners, despite challenges like inflation and high construction costs. Findings from the study indicate that 3DCP homes can be produced at a fraction of conventional costs, with estimates suggesting savings of 30-50%, while significantly shortening project timelines. Case studies from experimental builds reveal that locally sourced materials, such as stabilised earth and recycled construction waste, can be adapted for 3D printing, further enhancing affordability and sustainability. Empirical evidence from the interviews of artisans and surveys indicates conditional acceptance of the technology. This is shaped by concerns about skills relevance, material performance, and access to training, reinforcing the value of combining technical analysis with practitioner perspectives. However, barriers such as limited technical expertise, regulatory hurdles, and initial capital investment remain critical challenges. This paper concludes that 3DCP can help address Nigeria's housing problem by reducing costs, speeding up construction, and using eco-friendly materials. When aligned with existing housing frameworks, the technology offers a practical pathway to expand affordable housing delivery in Nigeria, providing scalable solutions that benefit low-income populations and contribute to the urban housing system.

Received: 16 October 2024

Revised: 12 June 2025

Accepted: 15 July 2025

Published: 6 November 2025

Cite article as: Obadoba, J. O. & Oduwaye, L. A. (2025). Localising 3D Construction Printing: A Mixed-Methods Assessment of Material Feasibility and Artisan Perceptions in Nigeria. *African Journal of Housing and Sustainable Development*, 6(1), pp. 137-147.

© The Authors, under the exclusive licence to Centre of Housing and Sustainable Development

Corresponding author:
oyizaagha@gmail.com

Keywords: Abuja, Affordable Housing, 3D printing, Innovation, and Sustainability

1.0 Introduction

Nigeria is grappling with an escalating housing crisis with a staggering deficit of 28 million units, driven by rapid urbanisation and a population

growth rate exceeding 3%. This accounts for over half of sub-Saharan Africa's total shortfall, according to the African Development Bank (AFDB, 2021). Major urban centres in Nigeria, such as Lagos and Abuja, where population growth

significantly exceeds housing provision, exhibit the most pronounced housing deficits. The National Housing Policy (NHP), reviewed in 2012, clearly guarantees “decent and affordable housing for all citizens”. However, the implementation of these policies remains critically constrained (Akinradewo et al., 2023). Consequently, there is an urgent priority for innovative, sustainable, and disruptive solutions capable of bridging the gap between policy ambition and substantial housing delivery, especially in Abuja..

Three-dimensional construction printing (3DCP), also known as additive manufacturing, emerges as a transformative technology with significant potential to address systemic failures in the housing supply sector. 3DCP is the process of fabricating physical objects from a digital model by layer-by-layer deposition of materials (Tay et al., 2017). 3DP offers a paradigm shift from traditional construction (Aghimien et al., 2021). Therefore, this study examines the prospects of (3DCP) as a sustainable housing solution to address Nigeria’s severe housing needs, exploring its potential to overcome the deep-rooted barriers that have long hindered the achievement of national housing goals. Specifically, the objectives are structured to assess the feasibility of locally sourced materials for 3DP; examine the perceptions and readiness of construction artisans who remain central to housing delivery in Nigeria; and evaluate the technology’s potential to enhance affordability, efficiency, and environmental sustainability in housing provision. Together, these objectives provide an integrated basis for understanding both the technical and socio-institutional conditions required to localise 3D printing within Nigeria’s housing sector.

2.0 Literature Review

This study is guided by an integrated Socio-Technological Transition (STT) theory and Diffusion of Innovation (DOI) theory. Together, both provide a concise but rigorous framework for empirical examination of the localisation of three-dimensional construction printing within Nigeria’s housing sector. From an STT perspective, particularly the multi-level perspective, 3DCP is understood as a niche innovation operating within a housing system dominated by conventional construction practices. Factors such as rapid

urbanisation, housing shortages, rising construction costs, and environmental concerns are pressures that create conditions under which alternative construction technologies can challenge existing regimes (Geels, 2004, 2019). In this study, the assessment of locally available printable materials reflects niche-level experimentation, while institutional, regulatory, and labour-related constraints illustrate the regime-level barriers that shape the feasibility of transition within Nigeria’s housing sector.

Diffusion of Innovation theory complements this systemic perspective by providing an analytical basis for understanding how construction artisans and practitioners perceive and respond to three-dimensional construction printing (Rogers, 2003). The adoption of the technology is influenced by perceived advantages, including reduced construction time, lower costs, and improved material efficiency, as well as its compatibility with prevailing housing practices and affordability objectives (Rogers, 2003; Smith et al., 2010).

Globally, the construction industry is undergoing a significant transformation driven by digitalisation and the pursuit of sustainable practices. Based on a digital design model, three-dimensional construction printing produces building elements through the automated, layer-by-layer placement of cement-based materials. By removing the need for conventional formwork and significantly reducing direct human involvement, the three-dimensional printing technology is increasingly recognised as a disruptive approach with the capacity to reshape traditional construction methods (Tay et al., 2017). This transition delivers three key benefits relevant for large-scale housing provision. It offers substantially shorter construction durations, significant reductions in labour requirements, and improved material efficiency (Mararo et al., 2025). These attributes offer a compelling solution for developing regions like Sub-Saharan Africa, which faces a devastating deficit of 51 million housing units amid rapid urbanisation (Moore, 2019; UN-Habitat, 2021).

From 2019 to 2023, government-built conventional low-income housing in Abuja sold for ₦6.6 million, ₦10.2 million, and ₦12.6 million for one-, two-, and three-bedroom units respectively; under the

Renewed Hope agenda in 2025, prices rose to ₦8.5 million, ₦11.5 million, and ₦12.5 million (FHA, 2021; Federal Housing Authority, 2025).

The technological maturity and viability of 3DP have been demonstrated through landmark projects primarily in the Global North. A seminal example is Project Milestone in Eindhoven, the Netherlands, and ICON's Vulcan construction system in the United States, which successfully printed five fully habitable, two-storey concrete residences and demonstrated efficacy in rapid housing delivery.

The World Economic Forum (2021) reported that ICON has particularly demonstrated the affordability potential of 3DCP by producing more than twenty homes in Texas using its proprietary cement-based material, Lavacrete, which achieves compressive strengths exceeding 50 MPa, with basic 500 sq. ft. units reported to cost as little as \$4,000. Salet et al. (2018) argued that the use of a robotic scaffold system shortened construction time while delivering bio-inspired architectural forms that complied with the European Union requirements for safety, thermal performance, and structural integrity. This was further supported by Ahmed et al. (2022), who attributed the success partly to algorithmic optimisation of material-deposition paths, which minimised waste.

The success of these projects, however, is underpinned by infrastructural and regulatory enablers often absent in developing economies. These include a stable power grid with >99% reliability, which ensures uninterrupted printing operations; advanced material supply chains that provides consistent access to high-grade cement and chemical admixtures; and well-defined regulatory frameworks with standardised testing protocols for novel construction methods (Aghimien et al., 2021; Bazli et al., 2023; Salet et al., 2018). This context is crucial, as the energy intensity of gantry printers (15–20 kWh/m²) and dependence on specialised, often imported, materials present significant barriers to direct technology transfer to regions like Sub-Saharan Africa (Afolabi et al., 2019; Mararo et al., 2025).

Recognising these construction barriers, implementations in the Global South have pivoted towards contextual innovation, emphasising local

material utilisation, energy solutions, and hybrid techniques to enhance feasibility and cultural acceptability. In Mexico, the New Story initiative achieved a 45% cost reduction by incorporating 70% locally sourced volcanic ash into its printing mortar. This simultaneously improves affordability and material performance (Bazli et al., 2023). Similarly, India's Tvasta Manufacturing Solutions developed rice-husk-ash composites that reduce curing time by 40%, an adaptation suited to humid tropical climates (Tay et al., 2017). These approaches are vital in African contexts, where imported materials can consume 60-80% of project budgets (World Economic Forum, 2021a).

African case studies on 3DP, though emerging, reveal a critical interplay between technical promise and socio-cultural challenges. Kenya's 14 Trees project utilised mobile printers and fly-ash mortar to deliver affordable units in Nairobi's informal settlements 20% faster than conventional methods (Moghayedi et al., 2024; Tabassum & Mir, 2023). However, post-occupancy evaluations revealed only 38% resident satisfaction, primarily due to aesthetic designs that did not align with local cultural expectations. In Malawi, a post-cyclone reconstruction programme employed laterite soil composites to print school buildings. While innovative, the project required expensive chemical admixtures to withstand monsoon conditions, increasing costs by 17% (Mararo et al., 2025). These experiences underscore that success in the African context depends not only on technical feasibility but also on socio-cultural acceptance and economic viability (Moghayedi et al., 2024).

The extant literature demonstrates that 3DP is no longer a futuristic concept but an emergent reality with proven benefits in speed, waste reduction, and cost management under optimal conditions. However, its application in developing economies, particularly in Nigeria, remains mainly theoretical and faces distinct challenges. In Nigeria, construction artisans continue to play a decisive role in housing delivery, particularly within low- and middle-income settings where informal and semi-formal building systems prevail. Artisans, including masons, electricians, aluminium fabricators, carpenters, tilers, painters, welders, plumbers and block moulders, undertake most site-based tasks such as material preparation, block production,

formwork, masonry, and finishing works. Their skills are commonly acquired through apprenticeship and on-site experience rather than formal technical education, resulting in labour-intensive construction practices that depend on implicit knowledge and established building routines. This structure strongly influences construction costs, delivery times, and overall housing quality nationwide. This review identifies several critical gaps in the current body of knowledge.

The introduction of advanced construction methods, including three-dimensional construction printing, requires a re-orientation of artisanal skills and work practices. Within a 3DP context, artisans are likely to assume responsibilities related to equipment handling, process supervision, and material control rather than direct manual construction. Therefore, material-related constraints further shape capacity of artisans to engage with three-dimensional construction printing.

Akinradewo et al. (2023) highlighted that material science, including optimal material formulations for locally abundant materials such as West African laterites, remains inadequately tested and documented in peer-reviewed studies. Additionally, there is a significant gap in developing robust regulatory and policy frameworks across Africa to govern the approval, quality assurance, and safety standards of 3D-printed structures.

Concerning scalability, existing African applications have been limited to small pilot projects, typically involving a few housing units, which offer limited evidence on the logistical, economic, and technical demands associated with large-scale implementation. (Moghayedi et al., 2024; World Economic Forum, 2021a). This study is situated within these gaps. It acknowledges the significant limitation posed by the complete absence of implemented 3DCP housing projects in Nigeria, which prevents the empirical validation of projected costs and material performance. Furthermore, reliance on case studies from other African nations may not fully capture Nigeria's unique contextual barriers, particularly its severe power infrastructure instability. Consequently, proposed policy solutions remain speculative without pilot projects to test their operational feasibility within Nigeria's complex regulatory environment.

3.0 Methodology

This study adopted a mixed-methods sequential explanatory design to examine the conditions under which three-dimensional construction printing (3DCP) can be localised for affordable housing delivery in Nigeria. The design combined qualitative field evidence from construction artisans and casual labourers with quantitative data derived from structured questionnaires and secondary project datasets. This approach enabled integrating practitioner perceptions with measurable performance indicators from comparable African contexts.

The qualitative phase explored experiential insights from frontline construction practitioners whose roles are central to housing delivery in Nigeria. A total of 34 casual labourers were observed, and purposive sampling was employed to select 18 master masons (bricklayers) actively engaged in low-cost housing projects across six area councils in the federal capital territory (FCT). Eligibility criteria included a minimum of ten years of professional experience and prior exposure to alternative construction techniques, such as stabilised earth or interlocking blocks.

Data were collected through semi-structured interviews lasting 60-90 minutes and organised around three thematic domains: perceived advantages of 3DP, anticipated technical and socio-cultural barriers, and locally grounded adaptation strategies. Interviews were transcribed verbatim and analysed using ATLAS.ti (version 24) following Braun and Clarke's (2006) six-phase thematic analysis procedure. Data collection continued until thematic saturation was achieved.

The quantitative phase comprised two components. First, a structured questionnaire was administered to the same artisan cohort to quantify perceptions identified during the qualitative phase. The questionnaire employed Likert-scale items measuring perceived affordability, constructability, skills compatibility, and adoption readiness. Descriptive statistics were used to summarise response patterns and support triangulation with qualitative themes.

Second, a quantitative meta-analysis of secondary case-study data was conducted to benchmark 3DP performance outcomes within African contexts. A

systematic desktop review was undertaken in line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, yielding eight peer-reviewed African case studies, with focused analysis of Kenya's 14 Trees project and Malawi's post-cyclone reconstruction initiatives. Extracted variables included construction cost per square metre, labour intensity, material inputs, and time efficiency relative to conventional construction. To ensure comparability, cost data were standardised using Purchasing Power Parity (PPP) conversion factors (World Bank, 2023), and an inflation-adjusted affordability index was computed to assess scalability under varying economic conditions. This meta-analytic approach enabled the re-analysis of existing quantitative evidence rather than reliance on descriptive case narratives alone.

Findings from the qualitative interviews, questionnaire responses, and quantitative meta-analysis were integrated through triangulation. A cross-comparison matrix mapped artisan perceptions against empirically documented performance outcomes to identify convergence and divergence across data sources. Credibility was enhanced through member checking and peer debriefing, while affordability projections were sensitivity-tested using inflation scenarios of 8%, 17%, and 25% to account for Nigeria's economic volatility.

4.0 Analysis and Discussion

The study engaged eighteen (18) practising masons, all of whom were male, reflecting the gendered

structure of skilled masonry work within Nigeria's construction sector. In addition, thirty-four (34) were observed to be casual labourers on site, highlighting the gendered division of labour in low-cost housing construction, where women's participation is mainly informal and non-skilled. This labour structure is relevant to the study, as the adoption of three-dimensional construction printing (3DP) is likely to alter existing skill hierarchies and employment patterns.

The masons had substantial professional experience, with 4 having approximately 12 years of practice, 5 having 16 years, and nine having over 20 years. Their corresponding age distribution clustered around 38, 46, and 51 years, indicating a predominantly mid- to late-career workforce. This demographic profile suggests a high reliance on established construction routines, which influences receptiveness to technological change and perceptions of skills displacement. Regarding educational attainment, seven respondents held diploma-level qualifications, while eleven had completed secondary education. None reported formal tertiary training in construction technology. All participants acquired their skills through apprenticeship and on-site learning under senior artisans, reinforcing the centrality of experiential knowledge in Nigeria's housing delivery system. This mode of skills acquisition is directly relevant to 3DP adoption, as it contrasts with the digitally mediated competencies required for additive construction processes.

Table 1: Socio-economic demography of participants

Characteristic	Category	Frequency
Participant Type	Skilled masons (male)	18
	Casual labourers (female)	34
Years of Experience (Masons)	12 years	4
	16 years	5
	20 years	9
Age Distribution (Masons)	38 years	4
	46 years	5
	51 years	9
Educational Level (Masons)	Diploma	7
	Secondary education	11
Mode of Skills Acquisition	Apprenticeship under senior artisans	18

Source: Primary data, 2025

This study sets out to investigate the conditions under which 3DCP could address Nigeria's acute affordable housing crisis. While the National Housing Programme aims to scale up through job creation and public-private partnerships, Abuja's lived realities starkly contrast these aspirations: with 800,000 deficits in FCT alone, unplanned settlements now encroach on airport corridors and riverbanks, evidence that "everybody somehow lives somewhere, even under bridges" (Master Mason, Kubwa). This dissonance between policy intent and ground truth frames our investigation into 3DP's disruptive potential.

Table 2 provides empirical validation of locally sourced materials, a foundational pillar for the feasibility of 3DCP in the FCT. Stabilised laterite sourced from the Giri Hills has a compressive strength of 28 MPa. This performance is significant not only from an engineering standpoint but also from an international comparative perspective, as it matches the properties of borate-stabilised composites successfully implemented in Malawi. This parity confirms the viability of using Abuja's indigenous geological resources in structural applications, reducing dependency on imported materials, and enhancing local value chains.

Similarly, bamboo-reinforced mortar, derived from the woodlands within the FCT, has a strength of 22 MPa and is 40% lighter than conventional steel-reinforced alternatives. This combination of adequate strength and reduced weight lowers transportation and handling costs, facilitates faster construction, and diminishes the overall structural load. Moreover, the use of bamboo resonates with traditional building practices, fostering artisanal inclusion and cultural continuity even within a technologically advanced construction paradigm. The recycled concrete aggregate, sourced from demolition sites in Lugbe, achieves a compressive strength of 30 MPa at a 45% substitution rate. This finding underscores the potential for a circular economy in construction, reducing waste while maintaining material integrity. By repurposing demolition by-products, this approach addresses urban waste challenges and minimises the environmental footprint of new housing projects, supporting broader sustainability targets. Together, these materials form a robust portfolio of local resources that can significantly reduce construction costs, enhance environmental performance, and promote socio-technical integration within Abuja's unique urban landscape.

Table 2: Local Material Performance in FCT

Material	Source	Strength	Adaptation Insight
Stabilized laterite	Giri Hills	28 MPa	Matches Malawi's borate-stabilised composites
Bamboo-reinforced mortar	FCT woodlands	22 MPa	40% lighter than steel-reinforced
Recycled concrete aggregate	Kubwa demolition sites	30 MPa	Validated at 45% substitution

Source: Primary data, 2025

Findings on the perception and readiness of construction artisans revealed a crucial nuance in Abuja's economy which lies in the paradoxical role of lower local wage rates. While daily labour costs in Abuja (which is averagely ₦2,500) are lower than in Nairobi (which is averagely ₦3,800), this does not diminish the value of automation; instead, it amplifies the relative economic advantage of 3DP. The technology's ability to drastically reduce labour intensity means that, even in a lower-wage environment, the proportional savings from automation remain substantial, confirming that the economic viability of 3DP is contextual rather than absolute. This insight challenges the assumption that automation is justified only in high-wage

economies and underscores 3DP's potential to transform construction economics across diverse regional settings.

The core formula used to normalise and compare costs across countries and economic scenarios is the Affordability Index, supported by Purchasing Power Parity (PPP) conversion rates. To ensure comparability across international case studies, construction costs were adjusted using Purchasing Power Parity (PPP) conversion factors published by the World Bank. This adjustment accounted for differences in local price levels between countries and enabled a like-for-like comparison of construction costs when translated to the Nigerian

context. As a result, all cost estimates discussed in this study reflect PPP-adjusted Nigerian-equivalent values, thereby reducing distortion arising from currency fluctuations and unequal purchasing power across study locations.

While Kenya's 14 Trees project employs 120 certified operators, Abuja faces a critical capability gap. The FCT records zero locally trained 3DP technicians. This deficit manifests during the interviews of the artisans, where 15 of 18 brick masons reported unfamiliarity with digital systems beyond basic mobile apps. As one Gwagwalada mason cautioned:

"We fix walls with trowels, not keyboards. Who will teach us to command these machines?" Bwari brick layer, 2025.

Further investigation reveals that the masons were initially intimidated by technology but are now open to learning. 80% of the respondents stated that their palms are so hard (callused) due to cement caking, and have to take painkillers daily to relieve their pain. They also suffer from back pain due to frequent bending; hence, manual labour is not an easy task. Consequently, the masons are open to using machines if trained accordingly.

Further probe revealed that there is no fear of machines taking over jobs; instead, artisans are open to new technologies.

"I have heard that beyond Nigeria, machines are commonly utilised; although I have not travelled beyond Nigeria, I hope we can adopt technology and acquire improved skills. This anguish is excessive. My children are unwilling to pursue my profession, despite my success in constructing two homes via diligent effort. Recently, one of our young artisans stated that he has moved to Germany to work as a mason. He informed us that the task became easier after he started working there. We require assurance that these 3D printers will not undermine our craft," stated Masonry Union Head, Bwari, 2025.

Further investigation revealed that there is no fear of machines taking over jobs; instead, artisans are open to new technologies. For example, in Malawi, to address the technical gap, a stopgap solution was adopted by flying in European technicians during Blantyre's cyclone reconstruction, which proved unsustainable and cost 38% of the project budget.

For Abuja, this underscores the urgency of embedding 3DP training within institutions like the FCT Building Craft School, using Kenya's NVQ-certified curriculum as a template.

Socio-culturally, the embrace of local materials fosters deeper stakeholder acceptance and preserves cultural continuity. The strong endorsement of bamboo by local masons, 16 out of 18 of whom referred to local materials as "ancestral building wisdom", signals the importance of integrating traditional knowledge systems with modern technology. A hybrid construction model, combining 3D-printed structural cores with artisanal finishes such as bamboo lattices and mud plasters, ensures that technological adoption does not erase cultural identity. This approach also promotes inclusive community engagement by creating pathways for skilled craftspeople, including those from low-income backgrounds, to participate in the modern construction ecosystem. Such a strategy not only enhances the aesthetic and cultural relevance of housing solutions but also facilitates broader social buy-in, which is essential for the success of large-scale housing initiatives under the Renewed Hope agenda.

Findings on 3DCP technology potentials provides a compelling comparison between conventional construction methods and projected outcomes enabled by 3D printing technology, explicitly contextualised within Nigeria's National Housing Programme (NHP) objectives. The analysis reveals three critical dimensions where 3DCP demonstrates transformative potential.

Firstly, findings from the survey revealed a projected 39% reduction in cost for a standard 60m² unit, from ₦8.7 million under conventional methods to ₦5.2 million using 3DCP, which represents a significant advancement in affordability. The 3D printing construction aligns directly with NHP's goal of providing accessible housing, as lower unit costs can translate into more affordable options for low- and middle-income households. The reduction is attributable to decreased material waste and optimised resource use, which are essential advantages of 3DCP processes. Secondly, the reduction in construction time from 18 weeks to just 6 weeks underscores the potential of 3D printing to enhance scalability. This 67% improvement in efficiency addresses one of the most persistent challenges in mass housing delivery: pace. By

accelerating project timelines, this technology could enable more rapid responses to housing deficits, support urban development goals, and reduce overall project overhead costs.

Finally, the findings show a shift in labour requirements from 15 workers to 4 operators, reflecting a strategic transformation rather than a mere reduction. While fewer general labourers are needed, this change emphasises the growing importance of skilled operators and technicians, suggesting a need for targeted training and capacity-building programs. This shift supports a move toward high-value jobs in the construction sector while maintaining opportunities for employment within evolving roles. These savings are not isolated figures but align meaningfully with efficiencies observed in comparable contexts, such as Malawi's 47% cost reduction, while surpassing outcomes in settings like Kenya, where savings were limited to 20%.

This economic advantage emerges from three core drivers, each substantiated by local data and artisan testimony. First is the reduction in labour requirements. From 15 workers, reduction to just four machine operators addresses the most significant cost component in Abuja's construction projects. Artisans identified this as what constitutes

58% of total expenses. 3D printing represents not merely a reduction in headcount but a fundamental shift from manual-intensive labour to a technology-assisted model, enhancing both efficiency and cost predictability.

Second is the unprecedented acceleration in construction timelines. Reduction of project duration from 18 weeks to just 6 weeks for a single unit directly supports the scalability required to address Nigeria's vast housing deficit. This 66% reduction in duration enables a dramatic increase in annual housing delivery capacity, aligning with national policy goals and introducing new potential for large-scale projects that can meaningfully counteract the housing shortfall.

Third is the minimisation of material usage, particularly the 35% reduction in cement. This direct lowers input costs while concurrently mitigating environmental impact. This finding is consistent with global literature on 3D waste-reduction capabilities (Wu et al., 2018). This efficiency is further enhanced by the integration of locally sourced materials such as stabilised laterite and bamboo, which not only reduce reliance on volatile imported materials but also create new opportunities for sustainable, regionally adapted construction practices.

Table 3: Material Waste Minimisation in 3DCP

Parameter	Conventional	3DP Projected	NHP Alignment
60m ² unit cost for a one-bedroom	₦8.7 million (\$6,900)	₦5.2 million (\$4,100)	39% savings on affordability
Construction time	18 weeks	6 weeks	Scalability for mass delivery
Labour required	15 workers	4 operators	Job transformation (not loss)

Source: Primary data, 2025

The most profound implication of this research is that the success of 3D printing in Nigeria depends less on importing foreign technology and more on adapting it through local material innovation. The study's validation of stabilised laterite (28 MPa), bamboo-reinforced mortar (22 MPa), and recycled concrete aggregate (30 MPa at 45% substitution) is not merely a technical finding but a strategic one. Therefore, embody a multifaceted strategy with significant economic, environmental, and socio-cultural ramifications.

Economically, localisation directly supports the objectives of the Renewed Hope mandate for mass

housing by drastically reducing construction costs and enhancing affordability. The use of Giri laterite and bamboo from the FCT greenbelts diminishes reliance on cement and steel, which are subject to price volatility and supply chain disruptions. This shift not only creates a natural cost buffer of up to 40% against inflation but also stimulates local economies by developing new material supply chains and related small enterprises. Furthermore, by reducing initial construction expenses, this approach aligns with the need to accommodate low-income earners, for whom housing affordability remains a critical barrier. The integration of local materials also opens opportunities for gendered

economic inclusion, as roles in material preparation, bamboo cultivation, and finishing trades can actively involve women, thereby fostering more equitable participation in the housing value chain.

Environmentally, the strategy of localisation positions Abuja to pioneer a model of sustainable urban development that is both ecologically sound and socially inclusive. As a planned city co-existing with longstanding indigenous communities, Abuja's growth must harmonise modern innovation with cultural and environmental continuity. Afolabi et al. (2019) and Akinradewo et al. (2023) affirmed that the use of locally sourced laterite, which carries a 32% lower carbon footprint than Dangote and BUA cement, along with carbon-sequestering bamboo, significantly reduces the embodied energy of housing projects.

Furthermore, integrating recycled concrete aggregate from demolition sites in areas such as Lugbe not only mitigates the city's mounting waste challenges but also conserves valuable natural resources. This approach does more than minimise the ecological impact of new construction; it aligns with global sustainability benchmarks and climate resilience commitments of Nigeria while ensuring that development remains respectful of the region's natural heritage and meaningful to its original inhabitants. By prioritising materials and methods that are both environmentally responsive and culturally attentive, Abuja can foster a more inclusive and sustainable form of urban expansion.

Theoretically, this study strengthens the critical yet underexplored nexus between additive manufacturing, the achievement of Sustainable Development Goal (SDG) 11 (Sustainable Cities and Communities), and the enhancement of urban resilience. 3DP moves the concept of affordable housing beyond mere cost reduction, redefining it to encompass broader principles of sustainability, durability, and cultural appropriateness.

However, this transformative potential is contingent upon a fundamental prerequisite: the establishment of a localised manufacturing ecosystem. The theoretical link between 3D printing and sustainable development collapses without the capacity to produce, maintain, and adapt the technology domestically. Manufacturing is the critical bridge that turns innovation into tangible

impact. It is the engine that enables the production of printers tailored to local conditions, the development of material processing equipment for laterite and bamboo, and the creation of a spare parts supply chain. Without this capacity, Nigeria risk perpetuating a cycle of technological dependency, importing expensive hardware and expertise that is unsustainable.

The findings on cost, speed, and material performance provide the economic justification; the next imperative is to build the industrial base to realise it. Therefore, future research and policy must focus on fostering this ecosystem, developing local technical skills, incentivising domestic production of 3D printing systems, and establishing material processing hubs. Manufacturing is not merely a supporting actor in this narrative; it is the very foundation upon which the revolution in affordable housing and sustainable urban development will be built. The promise of 3DP for Nigeria will remain theoretical until the concrete reality of local manufacturing capability underpins it.

5.0 Conclusion

This study was driven by a critical and pragmatic question: under what conditions can 3D printing be viably adopted to address Nigeria's severe and worsening affordable housing crisis? The research did not approach 3D printing as an inevitable technological panacea but as a disruptive innovation whose potential must be rigorously evaluated within the specific socio-economic, regulatory, and material context of Nigeria, a nation at the epicentre of Africa's housing deficit. The relevance of the results is philosophical. They demonstrate that the theoretical promise of 3D printing translates into a tangible, quantifiable opportunity for Nigeria. The core finding of the study is that 3D printing (3DP) can reduce construction costs by 30-50% and timelines by 66% for a standard housing unit; it is not merely a statistical projection but a potential paradigm shift. This efficiency directly addresses the twin pillars of the crisis: affordability and scalability. The technology could finally provide the mechanism to align the Nigerian government's policy aspirations, as outlined in the National Housing Policy, with on-the-ground delivery realities. However, this study firmly contextualises this potential within significant constraints. The results matter because they move the conversation

beyond technological hype to a clear-eyed roadmap for implementation. The research identifies that the primary barriers are not the technical feasibility of the printers themselves, but the surrounding ecosystem: a technological skills deficit, a regulatory vacuum, and the high upfront capital cost. These findings align with and extend the work of Agyabeng et al. (2022) and Watson (2020), who caution against the uncritical transfer of technology from the Global North to the Global South without contextual adaptation.

The empirical material from this study supports and refines known theories of technological adoption in developing economies. It confirms that success is dependent on localisation. The strong performance of locally sourced materials such as stabilised laterite and bamboo-reinforced mortar, coupled with artisans' endorsement, validates the principle that innovation must build upon, not replace, local knowledge and resources. This finding resonates with the arguments of Aghimien et al. (2021) on the importance of contextual innovation for the Global South. The artisans expressed willingness to retrain, despite initial technological intimidation, and challenged simplistic narratives of technology-induced job loss, instead supporting a theory of job transformation.

Therefore, the study concludes that three-dimensional construction printing represents a viable and potentially transformative approach to addressing Nigeria's housing deficit. Its effective adoption, however, depends on a coordinated, multi-stakeholder strategy that emphasises the development of a supportive local ecosystem rather than the mere importation of hardware and equipment. Essentially, this study concludes that the blueprint for solving Nigeria's housing crisis may not be found solely in concrete or code, but in the convergence of advanced technology with localised adaptation, strategic policy, and invested human capital. The original contribution of this paper lies in its triangulation of local artisan knowledge with

forward-looking economic projections, demonstrating how indigenous skills, material practices, and labour dynamics can be systematically integrated with cost, affordability, and inflation scenarios to assess the realistic prospects of scaling three-dimensional construction printing within Nigeria's housing sector.

Recommendations:

1. The study suggests initiation of pilot projects. Government and private sector partners should immediately fund and launch small-scale pilot projects within a designated "regulatory sandbox" in the FCT. The pilot project is the essential next step to move from projection to empirical validation.
2. Develop Local Capacity: Integrate 3D printer operation and maintenance into the curriculum of technical schools and artisan training programs, such as the FCT Building Craft School, to build a pipeline of skilled technicians.
3. Formulate Adaptive Regulations: The Standards Organisation of Nigeria (SON) and NBRRI must proactively develop and certify material standards for localised composites (e.g., bamboo-laterite) and establish clear approval pathways for 3D-printed structures.

Suggested areas for further study

1. Long-Term Performance Research: Future studies must monitor the durability, thermal performance, and maintenance needs of 3D-printed houses using local materials over an extended period.
2. Socio-economic Impact Analysis: Research is needed to deeply analyse the broader socio-economic impact, including the evolving nature of jobs in the construction sector and the community acceptance of 3D-printed homes post-occupancy.
3. Supply Chain Optimisation: Further investigation into optimising the local supply chain for printing materials is critical to achieve the projected cost savings at scale.

References

African Development Bank Group. (2021). *Supporting more liveable and sustainable cities in Africa*. https://www.afdb.org/sites/default/files/2021/02/19/af_db_umdf_brochure.pdf.

Afolabi, A., Ojelabi, R., Omuh, I., & Tunji-Olayeni, P. (2019). 3D house printing: A sustainable housing solution for Nigeria's housing needs. *Journal of Physics: Conference Series*, 1299(1), Article 012012.

Aghimien, D., Aigbavboa, C., Aghimien, L., Thwala, W., & Ndlovu, L. (2021). 3D printing for sustainable low-income housing in South Africa: A case for the urban poor. *Journal of Green Building*, 16(2), 129–141.

Agyabeng, A. N., Peprah, A. A., Mensah, J. K., & Mensah, E. A. (2022). Informal settlement and urban development discourse in the Global South: Evidence from Ghana. *Norsk Geografisk Tidsskrift – Norwegian Journal of Geography*, 76(4), 242–253.

Ahmed, Z., Wolfs, R., Bos, F., & Salet, T. (2022). A framework for large-scale structural applications of 3D printed concrete: The case of a 29 m bridge in the Netherlands. *Open Conference Proceedings*, 1, 5–19.

Akinradewo, O., Aigbavboa, C., Aghimien, D., Oke, A., & Ogunbayo, B. (2023). Modular method of construction in developing countries: The underlying challenges. *International Journal of Construction Management*, 23(8), 1344–1354.

Bazli, M., Ashrafi, H., Rajabipour, A., & Kutay, C. (2023). 3D printing for remote housing: Benefits and challenges. *Automation in Construction*, 148, Article 104772.

Federal Housing Authority. (2021). *Ongoing projects* [Government website]. <https://www.fha.gov.ng/ongoing-projects>.

Federal Housing Authority. (2025). *Property listing: Ongoing projects* [Government website]. <https://fha.gov.ng/property-listing/ongoing-projects>.

Geels, F. W. (2004). From sectoral systems of innovation to socio-technical systems. *Research Policy*, 33(6–7), 897–920.

Geels, F. W. (2019). Socio-technical transitions to sustainability: A review of criticisms and elaborations of the multi-level perspective. *Current Opinion in Environmental Sustainability*, 39, 187–201.

Mararo, I. M., Babafemi, A. J., & Aigbavboa, C. (2025). Towards understanding the perceptions of 3D construction printing in Kenya. *International Journal of Construction Management*, Advance online publication, 1–21.

Moghayedi, A., Mahachi, J., Lediga, R., Mosiea, T., & Phalafala, E. (2024). Revolutionising affordable housing in Africa: A comprehensive technical and sustainability study of 3D-printing technology. *Sustainable Cities and Society*, 105, Article 105329.

Moore, E. A. (2019). Addressing housing deficit in Nigeria: Issues, challenges and prospects. *Central Bank of Nigeria Economic and Financial Review*, 57(4), 201–222.

Rogers, E. M. (2003). *Diffusion of innovations* (5th ed.). Free Press. New York.

Salet, T. A. M., Ahmed, Z. Y., Bos, F. P., & Laagland, H. L. M. (2018). Design of a 3D printed concrete bridge by testing. *Virtual and Physical Prototyping*, 13(3), 222–236.

Smith, A., Voß, J.-P., & Grin, J. (2010). Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. *Research Policy*, 39(4), 435–448.

Tabassum, T., & Mir, A. A. (2023). A review of 3D printing technology: The future of sustainable construction. *Materials Today: Proceedings*, 93(3), 408–414.

Tay, Y. W. D., Panda, B., Paul, S. C., Mohammed, N. A. N., Tan, M. J., & Leong, K. F. (2017). 3D printing trends in building and construction industry: A review. *Virtual and Physical Prototyping*, 12(3), 261–276.

UN-Habitat. (2021). *The transformational impact of housing*. <https://unhabitat.org>.

Watson, V. (2020). Digital visualisation as a new driver of urban change in Africa. *Urban Planning*, 5(2), 35–43.

World Economic Forum. (2021a). *The affordable 3D-printed home that could transform African urbanisation*. <https://www.weforum.org/stories/2021/06/3d-printed-home-african-urbanization/>

World Economic Forum. (2021b). *The world's largest neighbourhood of 3D-printed homes to be built in the US*. <https://www.weforum.org/stories/2021/11/big-icon-create-worlds-largest-neighbourhood-3d-printed-homes/>

Wu, P., Zhao, X., Baller, J. H., & Wang, X. (2018). Developing a conceptual framework to improve the implementation of 3D printing technology in the construction industry. *Architectural Science Review*, 61(3), 133–142.